SPHERE
(Spectro-Polarimetric High-contrast Exoplanet REsearch)
A Planet Finder Instrument for the VLT

Jean-Luc Beuzit (PI), T. Fusco, C. Petit (AO)
Markus Feldt (Co-PI), David Mouillet (PS), Pascal Puget (PM),
Kjetil Dohlen (SE), F. Wildi (AIT)
and numerous participants from 12 European institutes!

LAOG, MPIA, LAM, ONERA, LESIA, INAF, Geneva Observatory,
LUAN, ASTRON, ETH-Z, UvA, ESO

Co-Is: D. Mouillet (LAOG, Grenoble), T. Henning (MPIA, Heidelberg), C.
Moutou (LAM, Marseille), A. Boccaletti (LESIA, Paris), S. Udry
(Observatoire de Genève), M. Turrato (INAF, Padova), H.M. Schmid (ETH,
Zurich), F. Vakili (LUAN, Nice), R. Waters (UvA, Amsterdam)
Science objectives

- High contrast imaging down to planetary masses
- Investigate large target sample: statistics, variety of stellar classes, evolutionary trends
- Complete the accessible period window
- First order characterization of the atmosphere (clouds, dust content, Methane, water absorption, effective temperature, radius, dust polarization)

Understand the planetary system origins
Science objectives

- Radial Velocity
- Large Surveys
- HC & HAR Imaging
- Transits
- Stars
- BDs
- Planets
- μ Lensing
SPHERE
High level requirements

- **Scientific requirements**
 - Gain up to 2 orders of magnitude in contrast as compared to current instrumentation
 - Reach short separations: 0.1" - 3" (1-100AU)
 - Survey a large number of targets

- **High contrast detection capability**
 - Extreme AO (turbulence correction)
 - feed coronagraph with well corrected WF
 - SR ~ 90% in H-band
 - Coronagraphy (removal of diffraction pattern)
 - high dynamics at short separations
 - Differential detection (removal of residual defects)
 - calibration of non common path aberrations
 - pupil and field stability
 - smart post processing tools

- **High sensitivity**
 - optimal correction up to V ~ 9-10
Concept overview

Common Path
- Fore optics
- Extreme AO
- NIR Coronagraph

Beam control
- (DM, TT, PTT, derotation)
- Pola control
- Calibration

High frequency AO correction
- (41x41 act.)
- High stability: image / pupil control
- Visible - NIR Refraction correction
 - FoV = 12.5"
 - 40x40 SH-WFS in visible
 - 1.2 KHz, RON < 1e-

Coronagraphic imaging
- Dual polarimetry, direct BB + NB.
 - $\lambda = 0.5 - 0.9 \, \mu m$
 - $\lambda/2D @ 0.6 \, \mu m$, FoV = 3.5"

ZIMPOL
- 0.95 - 1.35/1.65 μm
- $\lambda/2D @ 0.95 \, \mu m$
- Spectral resolution: $R = 54 / 33$
 - FoV = 1.77"

IFS
- 0.95 - 2.32 μm;
- $\lambda/2D @ 0.95 \, \mu m$
- Differential imaging: 2 wavelengths,
 - $R \sim 30$, FoV = 12.5"
- Long Slit spectro: $R \sim 50$ & 400
- Differential polarization

IRDIS

Pupil apodisation
- Focal masks: Lyot, A4Q, ALC.
- IR-TT sensor for fine entering

Nasmyth platform, static bench,
- Temperature control, cleanliness control
- Active vibration control
Combined use and advantages of IRDIS/DBI and IFS

Simultaneous use of Y-J band with IFS
Dual imaging in H

- Multiplex advantage for field and spectral range
- Mutual support: false alarm reduction, operation, calibration
- Immediate companion early classification

Astrometric accuracy: 0.5 - 2 mas (depending on SNR)

$10^{-6} (10^{-7})$ at 0.5”

$>1.77” (3’’)$

$5\times 10^{-6} (5\times 10^{-7})$ at 0.9”

$11” \times 12.5”$
- Correct for turbulence
 - Provide a corrected area of 1.5-2 arcsec diameter
 - 60 nm rms on corrected modes => (90% SR in H for typical Paranal conditions)
 - Residual jitter smaller than ±3 (goal 1.5) mas rms
 - Optimal perf for V-mag GS < 9 (goal 10)
 - Good correction (better than NAOS) for GS mag < 12 (goal 15)

- To ensure system stability
 - Optical axis wrt to coronagraphic device < 0.5 mas (goal 0.2)
 - Beam shift on optical surfaces < 0.2% (goal 0.1) of the full pupil diameter
 - Non common path aberrations (down to coronagraph device) < 15 nm rms

- To provide useful data for image post-processing
 - Storage of WFS and control data
 - Estimation of turbulence and system critical parameters
 - Measurement of IRDIS internal defects (differential aberrations)
SPARTA: Standard Platform for Adaptive optics Real Time Applications
SPHERE Deformable Mirror

- CILAS piezo-stack DM delivered end 2007
- Surface quality: 5nm rms
Fast Image Tip-tilt

- "X" bandwidth is 700 Hz at \(-3\text{dB}\) phase shift of \(-15^\circ\) at 80Hz
- "Y" bandwidth is 891 Hz at \(-3\text{dB}\) phase shift of \(-10^\circ\) at 80 Hz
- Goal 1000Hz

Prototype
1.2 kHz, CCD220-based wavefront sensor

- Benefits from the Opticon JRA1 research program (EU funded)
- Common with the VLT AO-facility
 1. pixels, square 24 μm
 2. 100% fill factor and 240x240 square grid array of pixels.
 3. low read noise of < 1 e-/pixel and goal of 0.1 e-/pixel.
 4. range of operating frame rates from 25 frames/s (fps) to 1200fps

- NGC development (ESO)
- Spatially Filtered SH
 - Optimization of the spatial filter size
 - Study of BB impact
 - WCOG: confirmation of the gain in perf (simulation & experimentation)
Main components - RTC

- Based on SPARTA platform
 - Consortium specifications (+ algo)
 - ESO development

- Main features
 - very small global delay (~ 1ms)
 - large number of actuators
 - hybrid control law
 - LQG (Kalman filter based) for TT
 - OMGI for higher modes
 - additional features to deal with SAXO specificities (DTTS, PTTS)

- Status
 - Specifications OK
 - Development:
 - Various version (drops) available for SPHERE during SPARTA development
 => optimization of the AIT period => reduction of risks and planning drifts.
 - First version to be delivered mid-July 2009
Differential Tip-Tilt Sensor
- IR camera located just before the coronagraph mask
- 1 to 10 % of the IR flux for this sensor
- WCoG measurement
- control of a diff. tip tilt plate
- closed loop scheme - 1-10 Hz
- additional capability: focus check between two observations
- Could potentially be used to implement on-line phase diversity (see L Mugnier pres.)

Pupil Tip-Tilt Sensor
- Use of SH data (sub-aperture, intensities)
- PTTM close to the entrance focal plane
- Closed loop scheme
- Frame rate ~ 0.1 Hz
- Residual beam shift < 0.2 % of the full pupil diameter
SPHERE
IRDIS dual beam imager

Young M0 star, 40 pc
1 MJ planet at 0.2"

Old M0 star, 10 pc
10 MJ planet at 0.1"
ZIMPOL performance

GOV, 3 pc
Filter: ZIM R16 (600–900 nm)
Coronagraph: Cl. Lyot, 5 λ/D
Integration: 4 h, 100 screens
Diff.ab.: SCIV
Extraction.: 2x2 gaussian

Noise Curves:
- intensity
- intensity, sign sw
- polarization
- polarization, sign sw
- pol, sign sw, ang avg
- photon limit

Planet Signals:
- intensity
- pol = 0.50
- pol = 0.10
Journées FOST/GRIL

Principe et ordres de grandeurs

Performance en forte évolution

2010's

2020's

~ all stars

R <~ 12

R <~ 9

R <~ ?

5sig DeltaMag contrast

separation (arcsec)

10^8 20

10^6 15

10^2 0.1

10 1

2000's

2000

2010

2010's

2020

~ all stars
Conclusions

- Very challenging project!
- Now at manufacturing stage
- At Paranal in early 2011
- Main science outputs by ~2015 for both:
 - Large surveys for statistical approaches, broad target selection
 - In-depth characterization of specific systems
- Critical step before further exoplanet studies in the ELT era for
 - Technological development
 - System/calibration/operational experience
 - Scientific preparation on the given available target sample
Thank you!
$N_{act} \cdot F_{samp} \Delta \lambda$, the necessary trade-offs

<table>
<thead>
<tr>
<th>GAINS</th>
<th>LOSSES</th>
</tr>
</thead>
</table>
| • N_{act} | • WFS Flux $\propto (N_{act})$
 ⇒ Loss in limit mag |
| • F_{samp} | • WFS Flux $\propto (F_{samp})^{-1}$
 ⇒ Loss in limit mag |
| • $\Delta \lambda$ (WFS-im) | • Chromatism effects
 ⇒ ⇒ contrast |
| ⇒ Corrected area $\propto N_{act}$
 ⇒ Contrast
 (profil $\propto (N_{act})^{-8/3}$)
 ⇒ Contrast $\propto (F_{samp})^2$
 ⇒ Noise effects $\propto \Delta \lambda^{-2}$
 WFS spectral bandwidth
 VIS detector
 ⇒ Gain in limit mag
 ⇒ contrast |

⇒ Complex trade-offs: depends on scientific requirements (ultimate contrast, number of targets) and atmospheric conditions
• 41x41 actuators => corrected area +/- 0.82” in H

• “Simplified” Error budget (nm rms) for SAXO

<table>
<thead>
<tr>
<th>Error sources</th>
<th>Low frequencies (nm)</th>
<th>High frequencies (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeing</td>
<td>0.65</td>
<td>0.85</td>
</tr>
<tr>
<td>total for atmospheric limitations</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>total for DM errors</td>
<td>11 (7)</td>
<td>13 (9)</td>
</tr>
<tr>
<td>Total for temporal errors</td>
<td>19 (15)</td>
<td>23 (18)</td>
</tr>
<tr>
<td>Total for residual aliasing error</td>
<td>20 (13)</td>
<td>32 (23)</td>
</tr>
<tr>
<td>Total for noise related errors</td>
<td>42 (35)</td>
<td>44 (36)</td>
</tr>
<tr>
<td>Total for mis-calibration errors</td>
<td>10 (5)</td>
<td>10 (5)</td>
</tr>
<tr>
<td>TOTAL for the AO main AO loop</td>
<td>54 (43)</td>
<td>62 (49)</td>
</tr>
</tbody>
</table>

• Telescope/instrument defects
 • in the corrected area: static / quasi-static => fully corrected by AO
 • high freq : no correction - included in the global system error budget

41x41 actuators
1.2 KHz
Filtered SH-WFS
EMCCD, WCoG, BB WFS
NCPA comp.

TOTAL for the AO main AO loop 52.8 64.0